

Tetrahedron Letters 44 (2003) 595-597

Palladium-catalyzed ring expansion reaction of 1-alkynylcyclobutanols with aryl iodides: an efficient route to 2-disubstituted methylenecyclopentanones

Li-Mei Wei, a,b Li-Lan Wei, a,b Wen-Bin Pana,b and Ming-Jung Wua,*

^aSchool of Chemistry, Kaohsiung Medicial University, Kaohsiung, Taiwan ^bFooyin University, Kaohsiung county, Taiwan

Received 31 July 2002; revised 31 October 2002; accepted 8 November 2002

Abstract—The reaction of 1-alkynylcyclobutanols with aryl iodides in the presence of $Pd(OAc)_2$ and Et_3N in acetonitrile at 80°C for 24 h gives 2-disubstituted methylenecyclopentan-1-ones in modest to good yields. The tandem insertion-ring expansion process proceeds via the formation of an alkynyl π -complex, followed by migration of a carbon–carbon bond of the *tert*-alkanol to form the cyclopentanones stereoselectively. © 2002 Elsevier Science Ltd. All rights reserved.

Palladium-promoted ring expansion reactions of 1alkenyl or 1-alkynyl cyclobutanols to the construction of five-membered ring systems have been successfully applied to the synthesis of biologically active natural products.^{1,2} (Scheme 1) Ihara and Fukumoto et al. have developed a cascade insertion-ring expansion reaction of allenylcyclobutanols with aryl iodides.³ The reaction generates a new carbon-carbon bond along with rearrangement of the four-membered ring system in a onepot process, and constitutes a potentially useful synthetic method for the efficient synthesis of natural products. Recently, we reported a powerful palladiumcatalyzed hydroarylation of aryl iodides with trimethylsilylacetylenes and disubstituted alkynes to give the diarylacetylenes and triarylethylenes.⁴ Our approach to a tandem addition-ring expansion reaction involves the application of the recently discovered hydroarylation conditions employing Pd(0) or Pd(II) to 1-alkynylcyclobutanols and aryl iodides. Now, we dis-

$$R_1$$
 R_2 R_2 R_3 R_4 R_4 R_5 R_6 R_7 R_8

Scheme 1.

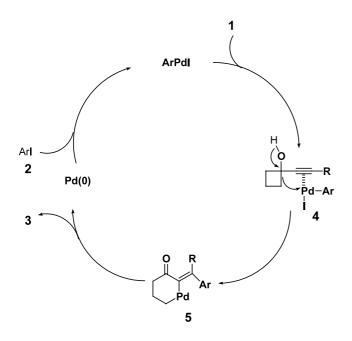
Keywords: palladium and compounds; ring expansion; cyclopentanones.

close a new strategy for the synthesis of 2-arylidenecy-clopentanones in a one-step process.

Tandem reactions were first studied using 1-[2-(4-tolyl)ethynyl]cyclobutanol (1a)⁵ and iodobenzene (2a).Treatment of 1a (0.3 mmol) and 2a (0.6 mmol) with 5 mol% Pd(dba)₂ and triethylamine (1.5 mmol) in acetonitrile at 80°C for 24 h under nitrogen provided the α -arylidenecyclopentanone 3aa in 50% yield (Table 1, entry 1).⁶

When the catalyst was replaced by other palladium such as $Pd(OCOCF_3)_2$, $Pd(OAc)_2$ Pd(CH₃CN)₂Cl₂ under the same reaction conditions, the same product was isolated in 68, 40 and 48% yields, respectively (entries 2-4). The results show that Pd(OAc)₂ is the most efficient catalyst for the successive addition-rearrangement of 1-alkynylcyclobutanols. As a solvent for this reaction, acetonitrile was found to be more efficient than MeOH, THF, DMF and 1,4-dioxane. Triethylamine was the base of choice, and other bases, such as K₂CO₃, NaOAc, Ag₂CO₃ and pyridine, were found to be less efficient. Thus, various aryl iodides were reacted with 1-[2-(4-tolyl)ethynyl]cyclobutanol 1a using Pd(OAc), as the catalyst and triethylamine as the base to give the 2-arylidenecyclopentanones 3 in 50-75% yields. The results are summarized in Table 1. 4-Tolyl iodide 2b and 4-methoxyphenyl iodide 2c afforded the corresponding cyclopentanones 3ab and 3ac in 70 and 50% yields, respectively (entries 5, 6). The reactions of 2-

^{*} Corresponding author.


Table 1. Palladium-catalyzed sequential addition-rearrangement of 1-(2-substituted ethynyl)cyclobutanols with aryl iodides

$$\begin{array}{c}
\text{OH} \\
\text{OH} \\
\text{R} + \text{ArI} \\
\text{ArI}
\end{array}$$

Entry	1-Ethynylcyclobutanols	Aryl iodides	Pd catalyst	Products ^a (yield, %)
1	1a (R = 4-tolyl)	2a (Ar = phenyl)	Pd(dba) ₂	3aa (50%)
2	1a	2a	$Pd(OAc)_2$	3aa (68%)
3	1a	2a	$Pd(OCOCF_3)_2$	3aa (40%)
4	1a	2a	Pd(CH ₃ CN) ₂ Cl ₂	3aa (48%)
5	1a	2b (Ar = 4-tolyl)	Pd(OAc) ₂	3ab (70%)
5	1a	2c (Ar = 4-methoxyphenyl)	Pd(OAc) ₂	3ac (50%)
7	1a	2d (Ar = 2-tolyl)	Pd(OAc) ₂	3ad (74%)
3	1a	2e (Ar = $2,3$ -dimethylphenyl)	Pd(OAc) ₂	3ae (70%)
)	$\mathbf{1b} \ (\mathbf{R} = \mathbf{phenyl})$	2a	$Pd(OAc)_2$	3ba (73%)
10	1b	2b	Pd(OAc) ₂	3bb (65%)
11	1b	2c	$Pd(OAc)_2$	3bc (49%)
12	1b	2d	$Pd(OAc)_2$	3bd (74%)
3	1b	2e	$Pd(OAc)_2$	3be (75%)
14	1c (R = n-butyl)	2b	$Pd(OAc)_2$	3cb (30% ^b)

^a Yields refer to isolated yields. All of the compounds gave satisfactory ¹H, ¹³C NMR and MS spectra data.

tolyl iodide **2d** and 2,3-dimethylphenyl iodide **2e** produced **3ad** and **3ae** in 74 and 70% yields, respectively (entries 7, 8), which indicated that steric hindrance has little effect on this addition reaction. However, when 2-iodopyridine was used in this reaction, no reaction took place and most of the starting materials were recovered. 1-[2-(Phenyl)ethynyl]cyclobutanol (**1b**) was prepared. The reaction of **1b** with various aryl iodides under the optimal reaction conditions gave the products in 49–75% yields. Iodobenzene gave the 2-disubstituted methylenecyclopentan-1-one **3ba** in 73% yield

Scheme 2.

(entry 9). 4-Tolyl iodide and 4-methoxyphenyl iodide afforded the corresponding cyclopentanones **3bb** and **3bc** in 65 and 49% yields, respectively (entries 10, 11). 2-Tolyl iodide and 2,3-dimethylphenyl iodide gave the cyclopentanones **3bd** and **3be** in 74 and 75% yields, respectively (entries 12, 13). The structure of **3bd** was unambiguously determined by X-ray crystallographic analysis. It should be noted that the ring expansion process proceeds in a stereoselective manner. 1-(1-Hexynyl)cyclobutanol (**1c**) was also examined. The reaction took place much slower and required 48 h to give the product **3cb** in only 30% yield (entry 14).

A mechanism for this cascade insertion-rearrangement reaction is proposed in Scheme 2. The formation of the product can be explained as follows; first, the oxidative addition of the aryl iodide to a palladium complex gives an arylpalladium intermediate, which coordinates to the carbon–carbon triple bond of 1 to form a σ-arylpalladium complex and produce the η^2 -palladium complex. Next, the ring transformation of 4 gives the σ -alkylpalladium complex 5 in a stereoselective fashion.³ Finally, reductive elimination of Pd(0) from the resultant σ alkylpalladium complex 5 provides the product 3. In conclusion, the tandem insertion-ring expansion of 1-alkynylcyclobutanols provides a one-step synthesis of α-disubstituted methylenecyclopentanones. This ring expansion reaction proceeds in a stereoselective manner.

Acknowledgements

We thank the National Science Council of the Republic of China for financial support of this program.

^b Reacted for 48 h.

References

- For some recent works on palladium-catalyzed ring expansion of cyclobutanols: see (a) Clark, G. R.; Thiensathit, S. Tetrahedron Lett. 1985, 26, 2503–2506; (b) Greene, A. E.; Luche, M.-J.; Serra, A. A. J. Org. Chem. 1985, 50, 3957–3962; (c) Liebeskind, L. S.; Mitchell, D.; Foster, B. S. J. Am. Chem. Soc. 1987, 109, 7908–7910; (d) Mitchell, D.; Liebeskind, L. S. J. Am. Chem. Soc. 1990, 112, 291–296; (e) Nemoto, H.; Miyata, J. M.; Fukumoto, K. Tetrahedron 1996, 52, 10363–10374; (f) Nemoto, H.; Yoshida, M.; Fukumoto, K. J. Org. Chem. 1997, 62, 7850–7857.
- Recently, Uemura et al. reported a palladium-catalyzed oxidative ring cleavage reaction of cyclobutanols: (a) Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 2645–2646; (b) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 11010–11011; (c) Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 2000, 122, 12049–12050.
- (a) Nemoto, H.; Miyata, J.; Yoshida, M.; Raku, N.; Fukumoto, K. J. Org. Chem. 1997, 62, 6450–6451; (b) Yoshida, M.; Nemoto, H.; Ihara, M. Tetrahedron Lett. 1999, 40, 8583–8586; (c) Yoshida, M.; Sugimoto, K.; Ihara, M. Tetrahedron Lett. 2000, 41, 5089–5092.
- 4. Wu, M.-J.; Wei, L.-M.; Lin, C.-F.; Leou, S.-P.; Wei, L.-L. *Tetrahedron* **2000**, *57*, 7839–7844.
- 5. Compounds 1a-c were prepared from the cyclobutanone as follows: to a dry 150-mL round-bottomed under nitrogen atmosphere was added the corresponding terminal alkyne (15 mmol) and tetrahydrofuran (15 mL). The solution was cooled to -78°C and n-butyllithium (1.6 M in hexane, 7.5 mL) was added dropwise by syringe. After stirring for 30 min, a solution of cyclobutanone (10 mmol) in THF (5 mL) was added dropwise and the mixture stirred at the same temperature for 2 h. The reaction mixture was quenched with saturated aqueous NH₄Cl and extracted with EtOAc. The combined organic extracts were washed with brine. The residue upon workup was chromatographed on silica gel, using n-hexane-EtOAc (10:1 v/v) as eluent to give the cyclobutanols 1a-c as colorless oils. Selected spectral data for 1-[2-(4tolyl)ethynyl]cyclobutanol: 1a, ¹H NMR (200 MHz,

- CDCl₃) δ 7.34 (dd, 2H, J=8.0, 1.7 Hz), 7.10 (d, 2H, J=8.4 Hz), 2.84 (b, 1H,), 2.37–2.53 (m, 4H), 2.34 (s, 3H), 1.82–1.91 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 138.2, 131.5, 128.9, 119.6, 91.9, 83.4, 68.2, 38.6, 21.3, 12.9; EI(MS) m/z (rel. intensity) 186 (M⁺, 2), 158(89), 143(41), 115(100).
- 6. Typical experimental procedure for the addition-ring expansion reaction. A slurry of the 1-alkynylcyclobutanol 1a (0.3) mmol), p-iodotoluene **2b** (0.6 mmol), Pd(OAc)₂ (5 mol%), PPh₃ (5 mol%), Et₃N (1.5 mmol) in CH₃CN (8 mL) was stirred for 24 h at 80°C. The reaction mixture was filtered through a short pad of silica gel to remove precipitated inorganic salts. The silica gel pad was washed three times with a small amount of EtOAc and the combined solution was evaporated to dryness under reduced pressure. The residue was chromatographed on silica gel using n-hexane-EtOAc (20:1 v/v) as eluent to give the cyclopentanone **3ab** (70%) as a light yellow solid. Mp: 149–150°C; ¹H NMR (200 MHz, CDCl₃) δ 7.10–7.14 (m, 4H), 7.07 (dd, 2H, J = 6.4, 1.8 Hz), 7.00 (dd, 2H, J = 6.4, 1.8 Hz), 2.80 (t, 2H, J = 7.0 Hz), 2.36 (s, 3H), 2.36 (t, 2H, J = 8.0 Hz), 2.35 (s, 3H), 1.91 (m, 2H); 13 C NMR (50 MHz, CDCl₃) δ 206.6, 148.6, 139.2, 138.4, 137.6, 137.3, 133.6, 129.7, 129.5, 128.6, 128.5, 39.9, 33.2, 21.4, 21.3, 20.5; Anal. calcd. for C₂₀H₂₀O: C, 86.92; H, 7.29. Found: C, 86.75; H, 7.36.
- 7. Crystal data for **3bd**: $C_{19}H_{18}O$; M=262.33 g/mol, crystal size: $0.40\times0.30\times0.25$ mm, triclinic, space group P-1, $\lambda =$ 0.71073 Å, a = 9.3796(9) Å, b = 9.4887(9) Å, c = 9.5587(9)Å, $\alpha = 87.687(2)^{\circ}$, $\beta = 85.472(2)^{\circ}$, $\gamma = 60.466(2)^{\circ}$, V =737.87(12) Å³, Z=2, D=1.181 Mg/m³. $\mu=0.071$ mm⁻¹, T=295(2) K, θ range: 2.14–27.5°, reflections collected: 7461, independent reflections: 3389 ($R_{\text{int}} = 0.0208$), refinement method: full-matrix least-square on F^2 , final R values[I>2 σ (I)]: $R_1 = 0.0746$, w $R_2 = 0.2185$. Diffractometer: Bruker SMART APEX. Crystallographic data (excluding structure factors) for this structure have been deposited at the Cambridge Crystallographic Data centre as supplementary publication no. CCDC-190286, and may be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).